We prove local in time well-posedness for a large class of quasilinear Hamiltonian, or parity preserving, Schrödinger equations on the circle. After a paralinearization of the equation, we perform several paradifferential changes of coordinates in order to transform the system into a paradifferential one with symbols which, at the positive order, are constant and purely imaginary. This allows to obtain a priori energy estimates on the Sobolev norms of the solutions.

VL - 36 UR - http://www.sciencedirect.com/science/article/pii/S0294144918300428 ER - TY - RPRT T1 - Long time existence for fully nonlinear NLS with small Cauchy data on the circle Y1 - 2018 A1 - Feola Roberto A1 - Felice Iandoli ER - TY - CHAP T1 - Dispersive Estimates for Schrödinger Operators with Point Interactions in ℝ3 T2 - Advances in Quantum Mechanics: Contemporary Trends and Open Problems Y1 - 2017 A1 - Felice Iandoli A1 - Raffaele Scandone ED - Alessandro Michelangeli ED - Gianfausto Dell'Antonio AB -The study of dispersive properties of Schrödinger operators with point interactions is a fundamental tool for understanding the behavior of many body quantum systems interacting with very short range potential, whose dynamics can be approximated by non linear Schrödinger equations with singular interactions. In this work we proved that, in the case of one point interaction in $\mathbb{R}^3$, the perturbed Laplacian satisfies the same $L^p$−$L^q$ estimates of the free Laplacian in the smaller regime $q \in [2,3)$. These estimates are implied by a recent result concerning the Lpboundedness of the wave operators for the perturbed Laplacian. Our approach, however, is more direct and relatively simple, and could potentially be useful to prove optimal weighted estimates also in the regime $q \geq 3$.

JF - Advances in Quantum Mechanics: Contemporary Trends and Open Problems PB - Springer International Publishing CY - Cham SN - 978-3-319-58904-6 UR - https://doi.org/10.1007/978-3-319-58904-6_11 ER -